
Arc Consistency Revisited

Ruiwei Wang and Roland H.C. Yap

National University of Singapore, Singapore
{ruiwei,ryap}@comp.nus.edu.sg

Abstract. Binary constraints are a general representation for constraints
and is used in Constraint Satisfaction Problems (CSPs). However, many
problems are more easily modelled with non-binary constraints (con-
straints with arity> 2). Several well-known binary encoding methods can
be used to transform non-binary CSPs to binary CSPs. Historically, work
on constraint satisfaction began with binary CSPs with many algorithms
proposed to maintain Arc Consistency (AC) on binary constraints. In
more recent times, research has focused on non-binary constraints and
efficient Generalized Arc Consistency (GAC) algorithms for non-binary
constraints. Existing results and “folklore” suggest that AC algorithms
on the binary encoding of a non-binary CSP do not compete with GAC
algorithms on the original problem. We propose new algorithms to en-
force AC on binary encoded instances. Preliminary experiments show
that our AC algorithm on the binary encoded instances is competitive
to state-of-the-art GAC algorithms on the original non-binary instances
and faster in some instances. This result is surprising and is contrary to
the “folklore” on AC versus GAC algorithms. We believe our results can
lead to a revival of AC algorithms as binary constraints and resulting
algorithms are simpler than the non-binary ones.
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1 Introduction

Binary constraint is a general representation for constraints and is used in Con-
straint Satisfaction Problems (CSPs) to model/solve any discrete combinato-
rial problem. Historically, work on constraint satisfaction began with binary
CSPs, problems with at most two variables per constraint and many algorithms
have been proposed to maintain Arc Consistency (AC) on binary constraints.
The seminal work of Mackworth [16] proposed a basic local consistency, arc
consistency, which has been the main reasoning technique used in constraint
solvers for CSPs. However, many problems are more naturally modelled with
non-binary constraints (constraints with arity > 2). Several well-known binary
encoding methods can be used to transform non-binary CSPs to binary CSPs.
Non-binary CSPs can be also solved directly which would require non-binary
constraint solvers, Generalized Arc Consistency (GAC) is the natural extension
of AC. In more recent times, research has focused on non-binary constraints
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and efficient Generalized Arc Consistency (GAC) algorithms using clever algo-
rithms, representations and data structures [22, 10, 12, 18, 3, 25, 27, 9, 8, 6, 26, 5,
24, 23]. Improvements in GAC algorithms have led to a “folklore belief” that
AC algorithms on the binary encoding of a non-binary CSP do not compete
with GAC.1 It has also spurred major developments in GAC algorithms.

We first show with experimental comparisons of binary encoding with state-
of-art GAC algorithms reasons why binary encoding with existing AC algorithms
are outperformed by GAC on non-binary constraints. We propose new algorithms
to enforce AC on binary encoded instances which address these factors: (i) a
more efficient propagator for hidden variable binary constraints; and (ii) con-
trol the interaction between the search heuristic and the binary encoded model.
Preliminary experiments show that our AC algorithm can be much faster than
state-of-the-art AC algorithms for non-binary CSPs, CT[5] and STRbit [26], on
their binary encoded instances. This result is surprising and is contrary to the
“folklore” on AC vs GAC algorithms. We believe our results can lead to a revival
of AC algorithms since binary constraints and resulting algorithms are simpler
than the non-binary ones. For example, many stronger consistencies were pro-
posed to handle binary constraints and these have been more extensively studied
in the case of binary constraints. Many fundamental works studying properties
of CSPs are often also studied in the binary case.

2 Background

A CSP (Constraint Satisfaction Problem) P is a pair (X , C) with n variables,
X = {x1, x2, ... xn}, and m constraints, C {c1, c2, ... cm}. The variable domains
are finite, D(xi) is the domain of xi ∈ X . We distinguish the current domain
of xi, dom(xi) ⊆ D(xi), the domain may shrink during search when solving
the CSP. The variables in each constraint ci is called the constraint scope,
scp(ci) = {xi1 , xi2 , ... xir} and r is the (constraint) arity. The constraint is a
relation defined over the constraint scope, rel(ci) ⊆

∏r
j=1D(xij ). In this paper,

we only consider non-trivial constraints, hence, r > 1. A constraint c is a binary
constraint iff r = 2, i.e scp(c) = {x, y}, otherwise, c is a non-binary constraint
iff r > 2. A binary CSP only has binary constraints; otherwise the CSP is a
non-binary CSP. An assignment A = {(x1, a1), (x2, a2), ... (xn, an)} satisfies a
constraint c iff A[scp(c)] ∈ rel(c) where the notation [v] denotes projection on
the set of variables v. Then A is a solution satisfying (X , C) iff A satisfies all
constraints in C and A ∈

∏n
i=1 dom(xi). Following [19], we say a CSP P1 is

equivalent to P if they are mutually reducible. A CSP P is reducible to another
CSP P1 if the solution of P can be obtained from the solution of P1, by mapping
the variable values in one CSP to variable values in the other.

A tuple τ ∈ rel(c) is valid iff τ [x] ∈ dom(x) for all x ∈ scp(c). We say (x, a)
is a support of tuple τ ∈ rel(c) iff τ [x] = a. A variable value (x, a) is generalized

1 We focus on AC and GAC algorithms for the general finite domain CSPs with table
constraints. Global constraints with special semantics and special GAC algorithms
exploiting the semantics are outside our scope.
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arc consistent (GAC) on c iff (x, a) has a valid support in rel(c). A variable x
is GAC on c iff for all value a ∈ dom(x), (x, a) is GAC. A constraint c is GAC
iff all variables in scp(c) is GAC on c. A CSP (X , C) is GAC iff all constraints
in C is GAC. A binary CSP P is arc consistent (AC) iff P is GAC, i.e. arc
consistency is a special case of GAC. For a binary constraint c, arc consistency
uses a simpler definition of support: a value a ∈ dom(x) has a valid support in
rel(c) iff (x, a) has a valid support b in dom(y) such that {(x, a), (y, b)} ∈ rel(c),
where scp(c) = {x, y}. M(G)AC is used to denote maintaining (G)AC during
search. In this paper, we focus on MGAC and MAC and simply say GAC or AC.

2.1 Binary encodings

A non-binary CSP P1 = (X1, C1) can be solved through transformation by en-
coding into an “equivalent” binary CSP P2 = (X2, C2) such that P2 is reducible
to P1. This means there are two options to solving a non-binary CSP P1: (i)
directly solving P1; or (ii) indirectly by solving P2. There are two well known
binary encodings, namely, the dual encoding [4] and the hidden variable encoding
(HVE) [19]:

- the dual encoding of P1 is a binary CSP (H,DC)
- the HVE of P1 is a binary CSP (X1 ∪H,HC)

with new variables H = {hvi|ci ∈ C1} where the domain of hvi is the tuples of
the ci itself, D(hvi) = rel(ci). Variables H are called hidden variables and also
sometimes called dual variables [21, 20]. In the dual encoding, the new constraints
are DC = {cij |s = scp(ci)∩scp(cj) 6= ∅}, i.e. scp(cij) = {hvi, hvj}, and rel(cij) =
{(τ1 ∈ rel(ci), τ2 ∈ rel(cj)) | τ1[s] = τ2[s]}. The hidden variable encoding has
constraints HC = {cxi |x ∈ scp(ci)}, one new constraint per variable in ci, i.e.
scp(cxi ) = {x, hvi}, and rel(cxi ) = {(a ∈ D(x), τ ∈ rel(ci))|τ [x] = a}.

Example 1 Consider a CSP P (X , C), where X = {x1, . . . , x4}, D(xi) = {0, 1}
and C = {c1 : x1 + x2 + x3 = 1, c2 : x2 + x3 + x4 < 2, c3 : x1 + x2 +
x4 < 2, c4 : x1 + x3 + x4 = 1}. Figure 1(a) gives the HVE CSP instance of
P , and Figure 1(b) is the dual encoding instance. Every node in the figure is
a variable, each edge corresponds to a binary constraint, and the label of the
edge denotes the relation of the binary constraint. E.g. D(hv1) = D(hv4) =
{1′, 2′, 4′} and D(hv2) = D(hv3) = {0′, 1′, 2′, 4′}, where the values 0′, 1′, 2′ and
4′ represent (0, 0, 0), (0, 0, 1), (0, 1, 0) and (1, 0, 0) respectively (the figure uses
the tuples notation). The constraint r1 = {(0, 1′), (0, 2′), (1, 4′)} is the relation
in the HVE constraints with scope {x1, hv1} and {x1, hv3} in the HVE while
r13 = {(1′, 2′), (2′, 4′), (4′, 0′), (4′, 1′)} is the relation in the dual encoding with
scope {hv1, hv2}.

3 History and The Problem

In this paper, we revisit the question whether non-binary CSPs are better solved
directly using a non-binary solver or the non-binary CSP is encoded to a new



4 Ruiwei Wang and Roland H.C. Yap

(0,0,1) (0,1,0)
(1,0,0)

hv1

(0,0,0) (0,0,1)
(0,1,0) (1,0,0)

hv2

(0,0,0) (0,0,1)
(0,1,0) (1,0,0)

hv3

(0,0,1) (0,1,0)
(1,0,0)

hv4

0 1x1 0 1x2 0 1x3 0 1x4

r1 r2 r3 r4 r5 r6

r4 r5 r6r1 r2 r3

(a) Hidden variable encoding

(0,0,1) (0,1,0)
(1,0,0)

hv1

(0,0,0) (0,0,1)
(0,1,0) (1,0,0)

hv2

(0,0,0) (0,0,1)
(0,1,0) (1,0,0)

hv3

(0,0,1) (0,1,0)
(1,0,0)

hv4

r12

r13

r14 r23

r34

r24

(b) Dual encoding

Fig. 1. Binary encodings
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Fig. 2. AC vs GAC algorithm: (a)-(c) use time on the axis while (d)-(f) use time and
node ratios
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Series 100% 80% 60% 40% 20%

Rand-5-12 50/50 50/50 50/50 50/50 50/50
Rand-15-23 25/25 25/25 25/25 25/25 25/25
Rand-10-60 50/50 50/50 50/50 50/50 50/50
Nonogram 88/170 78/170 71/170 53/170 40/170

Tsp 15/45 15/45 15/45 15/45 15/45
Jnh 50/50 40/50 25/50 2/50 0/50

Mdd-7-25 25/25 25/25 25/25 25/25 25/25
Rand-3-20 30/50 0/50 0/50 0/50 0/50

Table 1. Dual encoding memory size results: m/n means m instances were memory-out
of n total, x% are fraction of original constraints

binary CSP and solved by a binary constraint solver. We focus on the comparison
between binary constraints and table constraints which are the most general
representation for constraints in CSPs. We start with a chronology of binary
encodings and corresponding consistency algorithms (if any). In 1998, [1] showed
on some instances, forward checking (FC) with backtracking search on binary
encoded instances can be faster than solving the non-binary instances directly. In
1999, experimental results in [21] showed that enforcing AC on the dual encoding
instances is very expensive. In 2001, [17] proposed HAC showing that MHAC
is competitive with M(G)AC, and M(G)AC algorithms can be mapped to the
corresponding AC algorithms on binary encoded instances. In 2005, [20] showed
that binary encodings are competitive with the non-binary representation. It
also showed that a higher order consistency PW-AC can work well on binary
encoding instances. MHAC-2001 and PW-AC can be faster than MGAC-2001 in
some cases. However, they only tested some special cases for the dual encoding.
In 2011, [10] showed that the dual and double encodings run out of memory on
many instances, and STR2+ can outperform HAC and HVE+AC3bit+rm.2

During the past decades, many AC and table GAC algorithms were pro-
posed. AC algorithms check whether a variable value has a valid support on
another variable domain, and many methods are proposed to reduce the cost of
AC consistency algorithm during search. Over the period from 2007-2018, there
has been considerable research efforts expanded on GAC algorithms, but little
work on AC algorithms given the shift to GAC algorithms. Many of the GAC
algorithms use special ideas to make GAC more efficient. An incomplete list is
as follows: reducing the size of tables during search, e.g. algorithms using simple
table reduction during search[22, 10, 12], algorithms using decision diagrams [18,
3, 25], algorithms using compressed tables [27, 9, 8, 6], and bit set representations
[26, 5, 24, 23]. Some of the state-of-the-art GAC algorithms are CT[5] and STR-
bit[26] which combine bit set with simple table reduction can be much faster
than STR2+ [10].

2 (HVE+AC3bit+rm means using the AC3bit+rm on the HVE binary instances).
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In order to understand and revisit the results from existing papers such as
the ones above, we test various kinds of instances to compare different existing
algorithms. Experimental details are given in Section 5 to avoid repetition. The
main drawback of dual encoding is the large constraints which lead to the solver
running out of memory, which we call memory-out. This was also shown in [10].
We also tested with various instances, Table 1, where the 100% column is the
original instance and a random set of constraints removed creating a smaller
CSP. Many instances are simply memory-out, e.g. with jnh instances at 60%
(40% constraint removal) still 25 instances were memory-out. In this paper, we
focus on the hidden variable encoding as the dual encoding starts to become
infeasible as the constraints become larger.

We revisit GAC vs binary encodings for hidden variables with results in
Figure 2. Each dot in the graphs is a problem instance. For AC, we employ
AC3bit[15] with residues [11] denoted as AC3bit+rm. It has been shown to be
efficient in practice for AC because of the bit representation [13]. Figure 2(a)
compares time (in seconds) of ACbit+rm with CT on binary CSP instances. It
shows that AC3bit+rm can be faster than a recent state-of-the-art GAC algo-
rithm, CT, on binary CSP instances. While it might not be surprising that a
binary AC algorithm is faster than a non-binary algorithm, it highlights the
special nature of binary constraints. The special case of binary constraints is
simpler than the non-binary case which typically has more complex algorithms
and data structures. For example, the AC3bit+rm algorithm in Figure 2(a) is
much simpler than the CT algorithm and uses simpler data structures.

We now compare different ways of solving non-binary CSP instances. We
first compare solving non-binary CSP instances with the HAC algorithm on the
hidden variable encoding of the non-binary instances with the CT algorithm
on the original non-binary instances. Figure 2(b) compares the time of HAC3

with CT and shows that HAC is much slower than CT on non-binary CSP
instances. This result is the opposite of the binary-only instances in Figure 2(a)
and suggests what is known in the folklore that encoding a non-binary constraint
to binary form to be solved using a binary solver is much slower than using a
(modern) GAC solver on the non-binary constraints directly. The HVE encoding
with AC (using AC3bit+rm) is also slow, shown in the comparison of time between
HAC and HVE+AC in Figure 2(c). Figure 2(d) compares time versus search
nodes of HAC with HVE+AC with the y-axis giving the number of search nodes
of HAC/(HVE+AC) and x-axis giving the time of HAC/(HVE+AC). It shows
that the special propagator of HAC for HVE is more efficient than AC3bit+rm

on HVE.
Figure 2(e) and 2(f) reveals important factors behind why the performance of

HVE encoding + AC algorithm is worse than GAC (with CT) on the non-binary
instances:
(i) The concentration of points around the x-axis to the right of the y-axis

shows that for a similar number of search nodes, the search time is signifi-
cantly slower than CT (yet Figure 2(a) shows AC3bit+rm is faster than CT

3 In this paper, we use HAC to implicitly refer to HVE+HAC.
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for binary constraints which do not come from the hidden variable encod-
ing). This suggests that the CT propagator is more efficient than the AC
propagators on HVE instances;

(ii) There are many differences in the search nodes for the binary encoding versus
the original instance. Many instances have more search nodes in the binary
encoding as shown by the density of points above the x-axis.

As many points are far to the right, we see that the propagator efficiency may
be the factor for the superiority of CT though the difference in search nodes is
also a factor.

Search heuristics and consistency propagators are the main components in
a constraint solver. The results above show that with CT (and also other mod-
ern GAC propagators)4 both the efficiency of the constraint propagator and
effectiveness are reasons for the folklore superiority of GAC on the non-binary
instance over AC on the encoded instance. Furthermore, we have seen that the
binary constraints in HVE instances are very special. In this paper, we focus on
improving two problems identified for binary encoding instances:

1. Designing a special AC propagator which is more efficient for the binary
constraints in HVE instances.

2. Avoiding making the search heuristic on HVE instances worse than on the
original instances.

4 The hidable model transformation propagator

We saw that in Section 3, results illustrating the folklore suggesting it is better
to solve a non-binary CSP directly using GAC rather than with binary encod-
ing. The goal in this paper is to dispel this folklore notion. We also saw that
binary encoding can interact poorly with the search heuristic and that the binary
constraints from the hidden variable encoding are special.

To deal with the search heuristic problem, we “virtualize” the binary en-
coding so that the interaction between the binary encoded constraints can be
hidden from the search heuristic making it behave like the search heuristic for the
original non-binary constraint. This allows us to investigate the search heuristic
which behaves like in the non-binary instance but also have an alternative where
the search heuristic works on the HVE instance. We incorporate ideas from mod-
ern GAC algorithms to get a more efficient AC propagator for the special kinds
of binary constraints in HVE instances.

4.1 The hidable model transformation

The hidden variable encoding is a special transformation of a CSP P1 to a P2

where P2 is reducible to P1. We generalize this idea to allow different kinds of
transformations and search strategies,

4 Experimental results for STR2+ are also similar to CT and have not been shown.
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Definition 1 (X1 ∪ X2, C2) is a GAC hidable transformation of (X1, C1) iff C2
has a partition {s1, ..., sm} such that for each ci ∈ C1, scp(ci) ⊆ scp(si) and ci
is GAC iff all constraints in si are GAC, where scp(si) =

⋃
c∈si

scp(c).

Corollary 1 If (X1 ∪X2, C2) is a GAC hidable transformation of (X1, C1), then
(X1, C1) is GAC iff (X1 ∪ X2, C2) is GAC.

If P2 = (X1∪X2, C2) is an GAC hidable transformation of P1, then the solver
does not need to search the variables in X2, since GAC on P2 can check whether
an assignment on X1 is a solution of P1. As such, the search algorithm only
needs to consider X1 where the GAC propagators on P2 are a “black box”. In
this paper, we only consider binary encodings, i.e. P2 is a binary CSP.

Corollary 2 HVE is a GAC hidable model transformation.

Proof. For a non-binary constraint ci, we can set si = {cxi ∈ HC|x ∈ scp(ci)},
since (scp(si), si) is the HVE of (scp(ci), {ci}). The HVE encoding by construc-
tion of cxi already meets the requirements of Definition 1. The HVE transfor-
mation is only on non-binary constraints. For a binary constraint ci, we set
si = {ci}, also meeting the definition.

4.2 A propagator for the hidable model transformation

Algorithm 1 gives the HTAC algorithm to enforce AC on hidable binary encoding
instances. HTAC adds a variable x ∈ X1 ∪ X2 to the propagation queue Q if x
may be used to update the domains of other variables. Then HTAC iteratively
picks a variable x from Q, and then use AC algorithms to enforces AC on all
constraints in every subset si ∈ S such that x ∈ scp(si). For different si, we can
use different AC algorithms. If ci is a binary constraint in C1 and si = {ci}, then
HTAC can use any efficient AC algorithms, e.g. AC3bit+rm, to enforce AC on
ci. For a GAC hidable model transformation, we give special AC-H algorithms
exploiting the nature of constraints used in the transformation. In section 4.3, we
present a AC-H algorithm to handle the constraints used in HVE transformation.
HTAC is different from HAC [20]: HTAC adds original variables to Q while HAC
only adds hidden variables to Q. When the domain of a variable x is changed,
HAC directly updates the domains of all hidden variables constrained by x and
does not add x to Q. HTAC uses a reversible bit set to represent the domain
of a hidden variable (see Section 4.3), but HAC does not; The revise functions
used in AC-H are also different from HAC.

For a GAC hidable model transformation (X1∪X2, C2), the solver only needs
to search the variables in X1. Search heuristics which use information from the
constraint structure can choose to use the structure of the GAC hidable model
transformation or the original model. For example, the wdeg/dom [2] heuristic
records a weight w for each constraint, and increasing w by one if the constraint
causes inconsistency. Variables are selected based on the weights of constraints.
For the HVE transformation, we propose two alternatives for wdeg/dom:
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Algorithm 1: HTAC (X1, C1)

let (X1 ∪ X2, C2) be the hidable model transformation of (X1, C1);
let S be a partition of C2 making (X1 ∪ X2, C2) hidable;
Q ← X1;
while Q 6= ∅ do

pick and delete x from Q;
for si ∈ S s.t. x ∈ scp(si) do

if |si| = 1 then
// si = {ci}
if ¬AC(si) then

return false;

else if ¬AC-H(si) then
return false;

return true;

A. using wdeg/dom with the original model, we record a weight wi for each si ∈
S. Thus, wi is regarded as a weight for a virtual constraint representing the
weight of ci ∈ C1. Weight wi is incremented if AC(-H)(si) is not consistent;

B. using wdeg/dom with the HVE transformation, we record a weight wx
i for

each cxi ∈ C2 and wx
i is incremented if AC(-H)(si) is not consistent, where x

is picked from Q and x ∈ scp(si).

We call HTAC as HTAC1 if the heuristics use the original non-binary model
(A); and HTAC2 if the heuristics use the transformation model (B).

4.3 The AC-H algorithm for HVE

We first introduce the data structures used in the algorithm which incorporates
data structures used by (modern) GAC and AC algorithms [14, 10, 15, 5]:
1. For a original variable x:

– dom(x) uses an “ordered link” data structure proposed in [14] to repre-
sent the current domain of x.

– bitDom(x) uses a bit set to represent the domain of a variable x [15].
– bitSup(c, x, a) is used to represent all supports of variable value (x, a) in
bitDom(y), where scp(c) = {x, y} [15].

– lastSize(c, x) is used to record the size of dom(x) after the last update
on the domain of x based on c [10].

2. For a hidden variable x:
– bitDom(x) uses a bit set to represent the domain of x, if bitDom(x) is

changed, the old states of bitDom are recorded in a stack so that it can
be undone on backtracking.

– wordDom(x) is a sparse set used to record the non-ZERO words in
bitDom(x). It uses the reversible sparse bit-set idea in [5].
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– prevDom(x) is a copy of bitDom(x), we use prevDom(x) to check whether
bitDom(x) is changed.

– buf0 is a bit set, where all words in buf0 are initialized as ZERO (ZERO
is the bit set with all zeroes).

Algorithm 2 is to enforce AC on a set (si) of constraints for HVE instances,
where si = {cxi ∈ HC|hvi ∈ scp(cxi )}. The HVE transformation has a star
structure constraint graph (a special tree). This allows the AC-H algorithm to
update the domains of variables in two passes: (i) from leaves (x ∈ ci) to the root
(hvi), and (ii) from the root to the leaves. The first phase of revise is with function
revise2 to (partially) update the domain of hvi based on the current domains of
variables in scp(ci). Then function update updates wordDom representation of
hvi. If wordDom(hvi) = ∅, the instance is not AC. The second revise phase uses
function revise1 to update the domains of all variables in scp(ci). If the domain
of a variable x is changed, x is added to Q. We do not add hvi to Q, since the
domains of variables constrained with hvi are updated in the AC-H algorithm.

Algorithm 2: AC-H (si)

let hvi be the hidden variable constrained with binary constraints in si;
for each cxi ∈ si do

revise2(cxi , hvi);

if ¬update(hvi) then
return false;

for each cxi ∈ si do
if revise1(cxi , x) then
Q ← Q∪ {x};

return true;

Due to lack of space, we briefly sketch correctness of AC-H and associated
functions. The overall structure is similar to any AC algorithm using revise ex-
cept that we exploit the star constraint graph as explained above. The current
domain of hvi is only updated by the function revise2. Meanwhile, the function
revise2 deletes the values which do not have valid supports in the current do-
mains of the variables in scp(ci) from the current domain of hvi. If the function
update return false, all words in bitDom(hvi) become ZERO, which means that
it is not AC. Finally. the function revise1 is similar to AC3bit+rm.

4.4 Revise functions

In AC algorithms, the revise(c, x) functions are used to update dom(x) based
on dom(y), where {x, y} = scp(c), i.e removing the values in dom(x) which don’t
have valid supports in dom(y). We give two revise functions used in AC-H to han-
dle the reversible bit-set domains. The function revise1 updates original variable
domains using function seekSupport which is similar to that in AC3bit+rm algo-
rithm. The difference is that our seekSupport only check the words in wordDom.
For hidden variables, we do not use the seekSupport function, since each value
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in hidden variable domains (by construction) only has one support in rel(c),
i.e. an hidden variable hv functionally determines the values in the domains
of original variables constrained with hv (see [1]), which make bitSup useless.
Using the ideas from GAC algorithms CT[5] and STRbit[26], function revise2
applies the delete and reset functions to update bitDom. If the number of val-
ues deleted from dom(x) is larger than |dom(x)|, then function delete is used
to remove all supports of the deleted values from bitDom(hv). Otherwise, func-
tion reset is used to build a new bitDom(hv) based on current dom(x). After
updating bitDom(hv) of a hidden variable hv, the function update is used to
check bitDom(hv) for domain wipeout, for each word w in bitDom(hv), if w is
changed, the old value of preDom(w) in saved on a stack for backtracking, and
if w = ZERO it is removed from wordDom.

Function revise1(c, x)

size← |dom(x)|;
for each a ∈ dom(x) do

if ¬seekSupport(c, x, a) then
remove a from dom(x);

return |dom(x)| 6= size;

Function seekSupport(c, x, a)

Let y be the variable such that scp(c) = {x, y};
w ← rm[c, x, a];
if (bitSup[c, x, a][w]&bitDom[y, w]) 6= ZERO then

return true;

for each w ∈ wordDom(y) do
if (bitSup[c, x, a][w]&bitDom[y, w]) 6= ZERO then

rm[c, x, a]← w;
return true;

return false;

Function revise2(c, hv)

Let x be the variable such that scp(c) = {x, hv};
dn← lastSize(c, x)− |dom(x)|;
if dn > |dom(x)| then

reset(c, hv);

else if dn > 0 then
delete(c, hv, dn);
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Function delete(c, hv, dn)

Let x be the variable such that scp(c) = {x, hv};
for i = 0 to dn do

Let a be the last i value deleted from dom(x);
for each w ∈ wordDom(hv) do

bitDom[hv,w]← bitDom[hv,w]&¬bitSup[c, x, a];

Function reset(c, hv)

Let x be the variable such that scp(c) = {x, hv};
for each a ∈ dom(x) do

for each w ∈ wordDom(hv) do
buf0[w]← buf0[w]|bitSup[c, x, a];

for each w ∈ wordDom(hv) do
bitDom[x,w]← buf0[w]&bitDom[hv,w];
buf0[w]← ZERO;

Function update(x)

for each w ∈ wordDom(x) do
if bitDom[x,w] 6= prevDom[x,w] then

save prevDom[x,w] in a stack;
prevDom[x,w]← bitDom[x,w];
if bitDom[x,w] = ZERO then

remove w from wordDom(x);

return wordDom(x) 6= ∅;

5 Experiments

We present experiments to evaluate HTAC on the hidden variable encoding
(HVE+HTAC1 and HVE+HTAC2) compared with HVE+AC3bit+rm, HAC,
STR2+, CT and STRbit algorithms. HTAC, HVE+AC3bit+rm and HAC main-
tain AC (MAC) on the hidden variable encoding instances. STR2+, CT and
STRbit maintain GAC (MGAC) on the original non-binary instances. CT and
STRbit are the state-of-the-art GAC algorithms, and HAC is the best existing
algorithm for binary encoding from Section 3. We used binary and non-binary in-
stances from the XCSP3 website (http://xcsp.org). Instances from XCSP3 which
timeout for all compared algorithms are ignored. In total, we evaluated 1328
binary and 2431 non-binary problem instances. The binary CSP series are:

QCP, QWH, Geometric, Rlfap, Driver, Lard, Queens, RoomMate, Prop-
Stress, QueensKnights, KnightTour, Random

The binary instances are discussed in Section 3 in Figure 2(a). The non-binary
CSP series are:
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Kakuro, Dubois, PigeonsPlus, MaxCSP,Renault, Aim, Jnh, Cril, Tsp,
Various, Nonogram, Bdd-{15,18}-21, mdd-7-25-{5,5-p7,5-p7}, reg2ext,Rand-
3-24-24, Rand-3-24-24f, Rand-5-12-12, Rand-5-{2,4,8}X, Rand-10-20-10,
Rand-10-20-60, Rand-15-23-3, Rand-5-10-10, Rand-5-12-12t, Rand-7-40-
8t, Rand-8-20-5, Rand-3-20-20, Rand-3-20-20f
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Fig. 3. HTAC vs other algorithms: (a)-(f) use time on the axis while (g)-(i) use node
and time ratios in the axis

This section focuses on the non-binary instances. Results on the non-binary
series are also given in Section 3 comparing HAC, HVE+AC3bit+rm and CT.
The experiments were run on a 3.20GHz Intel i7-8700 machine. We implemented
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HTAC in the Abscon solver5 which has the other algorithms implemented. In
addition, we optimized the Abscon CT and HAC implementation to be a little
faster.6 The variable search heuristic used is wdeg/dom and the value heuristic
used is lexical value order. The wdeg/dom with restart is considered one of
state-of-the-art heuristics in classic constraint solvers [7]. The restart policy was
geometric restart (the initial cutoff = 10 and ρ = 1.1)7. CPU time is limited to
1200 seconds per instance and memory to 8GB.

Figures 3 shows 9 scatter plots to compare HVE+HTAC with other algo-
rithms. Each dot in the plots is an instance. Figures 3(a) to 3(f) compare the
time8 of different algorithms. Meanwhile, Figures 3(g), 3(h) and 3(i) compare
the time ratio and node ratio, where the time (node) ratio of A/B means the
ratio “the time (number of search nodes) of algorithm A” to “the time (num-
ber of search nodes) of algorithm B”. Figures 3(a),3(b) and 3(c) show that
HVE+HTAC2 and HVE+HTAC1 can outperform the other binary algorithms.
From Figure 3(g), giving the time ratio and node ratio of (HTAC2+HVE)/HAC
(see the discussion of ratio graphs in Section 3), we see that HTAC is generally
much faster than HAC, since most points around the x-axis are at the left of the
y-axis. For most instances, the search nodes of HTAC2 is less than HAC.

Figures 3(d), 3(e) and 3(f) show HTAC is competitive with the state-of-the-
art GAC algorithms CT and STRbit. HTAC1+HVE using wdeg/dom on the
original model is competitive with CT, being faster than CT on some instances.
HTAC2+HVE using wdeg/dom on the HVE transformed model is faster than
STRbit and CT on many instances. Figure 3(h) combines node ratio and time
ratio to show the runtime and search nodes tradeoffs of HTAC2 with CT with
more instances having less nodes and time. Figure 3(i) compares HTAC2 with
HTAC1, the performance of HTAC1 is similar to CT.

Figure 4 shows the runtime distribution of the problem instances solved by
the different algorithms. The y-axis is the solving time (in seconds) and the
x-axis is the number of instances solved within the time limit. It shows firstly,
the folklore that binary encodings are slower with HVE+AC3bit+rm and HAC
being behind STR2+ (also show in [10]). There is a separation between STR2+
and newer GAC algorithms (STRbit and CT). The performance of our HTAC
algorithms is competitive with STRbit and CT, in particular, HTAC2 is faster
on some instances.

5 https://www.cril.univ-artois.fr/∼lecoutre/#/softwares
6 While implementing HTAC, we found some optimizations for the existing CT and

HAC code.
7 cutoff is the allowed number of failed assignments for each restart. After restart,
cutoff increases by (cutoff × ρ)

8 For binary encoding instances, the time includes solving time and model transfor-
mation time.
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6 Conclusion

We first show experimental results which can explain the folklore that it is better
to solve a non-binary CSP instance directly with GAC than by a binary encoding
of the instance and using AC. We show that this folklore is misleading, solving
with the binary encoding can be improved by having a more efficient propagator
for binary constraints from the HVE instances and preventing poor interaction
of the HVE model with the search heuristic.

We propose a new propagator HTAC. By using the GAC hidable binary
encoding with HTAC, we can address the differences in search nodes so that
the search space on the binary instance behaves as in the non-binary instance
but it also allows search on the binary encoded model. The HTAC propagator
gains efficiency by using properties of binary constraints in the HVE. It is also
efficient as we apply ideas from modern GAC algorithms. Experiments show
that HTAC on the binary encoded instance is competitive with state-of-the-
art GAC algorithms on the original instances, in some cases, HTAC is faster.
Not only have we shown that solving with the binary encoding is viable and
competitive, we believe that it opens new directions for modelling and solver
algorithms while still retaining the original non-binary instance. Binary instances
and constraints are special being simpler so the algorithms can also be simpler.
Many transformations and higher consistencies can be applied directly to binary
instances.
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